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Optimal learning in multilayer neural networks
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The generalization performance of two learning algorithms, Bayes algorithm and the ‘‘optimal learning’’
algorithm, on two classification tasks is studied theoretically. In the first example the task is defined by a
restricted two-layer network, a committee machine, and in the second the task is defined by the so-called
prototype problem. The architecture of the learning machine, in both cases, is defined to be a committee
machine. For both tasks the optimal learning algorithm, which is optimal when the solution is restricted to a
specific architecture, performs worse than the overall optimal Bayes algorithm. However, both algorithms
perform better than the conventional stochastic Gibbs algorithm, especially for the prototype problem in which
the task and the learning machine are very different.
@S1063-651X~97!04401-2#
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I. INTRODUCTION

Feedforward neural networks are interesting becaus
their ability to extract an underlying rule from examples@1#.
Using the techniques introduced by Gardner and Derrida@2#,
statistical mechanics has been applied to study how rule
traction takes place in feedforward neural networks~for a
review see@3#!. In these generalization problems the rule
usually represented by a teacher network, which provide
output the labels of the correctly classified inputs. In rec
years interest has moved from the simplest and best un
stood model, the simple perceptron, to multilayer networ
The simple perceptron is able to implement a limited class
functions, the linearly separable ones, whereas multila
networks, in principle, are able to approximate any funct
@4#. Multilayer networks are thus of much greater practic
interest.

The statistical-mechanics analysis becomes increasi
involved when an additional hidden layer of processing un
is introduced. Our analysis of two-layer networks is limit
to the committee machine in which only the weights in t
input-to-hidden layer are adjustable and the hidden-to-ou
connections are fixed to unity. When the outputs of the h
den units are restricted to only61, the output from the com
mittee machine becomes the majority vote of the hidden
outputs.

In the usual statistical-mechanics approach, training
considered to be a stochastic minimization of an ene
function, which for classification problems is taken to be t
sum of misclassifications on the training set, a strategy th
usually calledGibbs learning. It is possible, however, to ge
better average generalization ability if we have at our d
posal additional knowledge about the rule. It is possible
define an optimal~in the information theoretical sense! learn-
ing algorithm, which is the one that gives the lowest avera
generalization error. This algorithm, theBayes algorithm@5#,
is defined without reference to the learning machine. It

*Electronic address: winther@connect.nbi.dk
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also possible to define anoptimal learningalgorithm for a
specific machine@6#. In this article we analyze optimal learn
ing in the committee machine and the Bayes algorithm
two rules that have been studied in the literature for the c
of the Gibbs learning algorithm. From this study it is ther
fore possible to determine to what degree the interes
multilayer effects observed in the Gibbs learning scena
are a result of the student network’s intrinsic properties~its
capacity! or a property of the teacher.

Schwarze@7# and O’Kane and Winther@8# studied learn-
ing of two different rules in the fully connected committe
machine~the first implemented by another committee m
chine and the second defined by the so-called proxim
task!. In both cases it was observed that there exist two lea
ing regimes. For small training sets the solution is symme
in the sense that all hidden units have equal probability
predicting the right output for the task. In this regime t
committee machine cannot do better than the simple per
tron learning the same task. For large training sets a tra
tion to a specialized solution takes place, i.e., the hidd
units make a division of labor for the task. Another effect
the symmetry of the rule, called retarded generalization,
been observed by the authors of@9,10# by which up to a
certain critical number of examples the learning mach
fails to generalize at all.

In Sec. II we outline the statistical approach to learni
for the general case of a deterministic binary classifier.
Sec. III we consider the Bayes algorithm and optimal lea
ing in the committee machine for the realizable case o
rule—the teacher—itself defined to be a committee mach
of the same structure as the student network. In Sec. IV
consider the Bayes algorithm and optimal learning in
proximity problem, which is only realizable by a committe
machine in the limit where the number of hidden units go
to infinity. Finally, in Sec. V we give a summary and
discussion of the results.

II. STATISTICAL THEORY OF LEARNING
WITH A TEACHER

The basic information available in the learning problem
the training set: a set of P input-output pairs
836 © 1997 The American Physical Society



ar

le

h
en
h

st
et

fo

i
pr
u

oo
t

-

e

ge

i.

lu
en
nc

ar
r

n
s,
the

er
a-

le

eri-
ts
-
o

he
a

-
las-
in-

be

d
nt

s-

ing

t
en-

and
he
iza-
e

55 837OPTIMAL LEARNING IN MULTILAYER NEURAL NETWORKS
D5(S,t)5$Sm,tm%m51, . . . ,P , where the input is an
N-dimensional real vector,S5(S1 , . . . ,SN), and the output
is binary t561. We shall assume that the examples
obtained from an unknown deterministic classifier~called the
teacher!, characterized by an outputt(V,S) and a set of pa-
rametersV. The teacher is assumed to draw the examp
randomly and independently with this distributionP(SuV).
As indicated, the distribution may in principle depend on t
teacher’s internal structure. In Secs. III and IV we pres
two explicit examples of teachers. The probability that t
teacher generates the whole training set becomes

P~DuV!5 )
m51

P

Q@tmt~V,Sm!#P~SmuV!. ~1!

Using Bayesian inversion, we may now calculate the po
rior probability of teachers given the training s
P(VuD)5P(DuV)P(V)/P(D), whereP(V) is the a priori
measure in the space of teachers andP(D)
5*dVP(DuV)P(V). The actual set of teachers~in V space!
that may generateD is calledversion spaceand is defined as
thoseV’s for which P(VuD).0.

A. Bayes algorithm

We may now calculate the probability in version space
an outputs, given the inputS,

P~suD,S!5^Q@st~V,S!#&~VuD ! . ~2!

Since we do not know the true rule, except that it must be
the version space somewhere, we may also inter
P(suD,S) as the probability that the true rule gives outp
s on inputS.

Under these circumstances the best we can do is to ch
the output label that has the highest probability according
Eq. ~2!. For binary classification, we have

sBayes~D,S!5argmax
s

P~suD,S!5 sgn̂ t~V,S!&~VuD ! .

~3!

This is theBayes algorithm. The probability that the algo
rithm yields an error is given byP(2sBayes(D,S)uD,S). Av-
eraging over all possible inputs, we obtain the expected g
eralization error of Bayes algorithm

eBayes~D !5^P~2sBayes~D,S!uD,S!&~SuV! . ~4!

In the subsequent sections we will study the limit of lar
system size~the thermodynamic limit! in which quantities
such as the error are expected to be self-averaging,
eBayes(D)'eBayes[^eBayes(D)&D . In principle, it is clear
how to implement the Bayes classifier using Eq.~3!. How-
ever, in practical situations it might not be possible to eva
ate, i.e., to construct, a learning machine that will implem
it. The Bayes algorithm may, nevertheless, serve as a be
mark for all other algorithms.

B. Gibbs learning

In a deterministic binary classifier, such as a feedforw
neural network, the input is anN-dimensional real vecto
e
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S5(S1 , . . . ,SN) and the output is given by a binary functio
s(W,S)561, whereW is a set of structural parameter
called weights, which specify the possible realizations of
general architecture given by the form of the function.

In Secs. III and IV we shall consider a specific two-lay
neural network model, the fully connected committee m
chine student, withN inputs,K hidden units, and a single
output unit. The weight vector of thekth hidden unit is de-
noted byWk and the committee machine performs a simp
~binary! majority vote on the output from theK simple per-
ceptrons of the hidden layer:

s~W,S!5 sgnF 1

AK(
k51

K

sgnS 1

AN
Wk•SD G .

The length of each of the weight vectors is fixed by a sph
cal constraintuWku25N and the components of the inpu
are taken to be random, ofO~1! and independent. The pre
factors 1/AN and 1/AK are introduced for convenience t
make the arguments of the sign functions ofO~1!.

The network’s ability to generalize is measured by t
generalization function, which is defined to be the error on
single example averaged over all possible input values,

e~W,V!5^Q„2s~W,S!t~V,S!…&~SuV! , ~5!

where^ & (SuV)5*dSP(SuV)••• denotes the average over in
put values. In the Gibbs learning approach the student c
sifier undergoes training based on minimization of the tra
ing error E(W,D)5(m51

P Q„2tms(W,Sm)…. It is assumed
that after training the ensemble of student networks will
characterized by a Gibbs posterior probability distribution

P~WuD !5
1

Z~D !
e2bE~W,D !P~W!, ~6!

whereP(W) is the a priori measure in weight space an
T51/b is a formal temperature. The normalization consta
becomesZ(D)5*dWP(W)e2bE(W,D). The generalization
error of the Gibbs algorithm is calculated by taking the po
terior average over the generalization function Eq.~5!

eGibbs~V,D !5^e~V,W!&~WuD ! . ~7!

This quantity is also expected to be self-averag
in the thermodynamic limit eGibbs(V,D)'eGibbs
[^eGibbs(V,D)&V,D .

C. Optimal learning

In theoptimal learningalgorithm we exploit the fact tha
we can average out the ignorance about the rule in the g
eralization function to form a new quantity, thenetwork er-
ror @6#,

enet~W,D !5^e~W,V!&~VuD ! . ~8!

The network error depends only on observable quantities
is thus in principle calculable from the training set and t
prior knowledge of the teacher. It is the expected general
tion error for any studentW that has been presented with th
set of examplesD.
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838 55O. WINTHER, B. LAUTRUP, AND J.-B. ZHANG
The best student is, in this case, the one with the low
network errorWopt(D)5argminWenet(W,D) leading to the
smallest expected generalization error

eopt~D !5enet„Wopt~D !,D…. ~9!

In contrast to the Bayes algorithm, the optimal learning
gorithm does depend on the choice of learning machine.
tice that this is the best that can be done with a fixed stud
architecture.

In general, one has the following relation between
three learning algorithms described:eBayes<eopt<eGibbs. For
the simple perceptron learning a perceptron teacher, it tu
out that the equality between the Bayes and optimal learn
holds@6#. For the scenarios studied in this paper it turns
not to be so.

III. COMMITTEE MACHINE TEACHER

In the following we consider the learnable case of a ta
defined by a teacher network of the same structure as
student network t(V,S)5sgn@(1/AK)(ksgn(Vk•S/AN)#
trained onP5aNK training examples with inputs draw
component by component with independent normal distri
tions:P(S)5(2p)2N/2e2(1/2)S2. The teacher vectors are cho
sen to be random with spherical normalization, i.
P(V)5PkP(Vk) andP(Vk)}d(uVku22N).

A. Bayes algorithm

Thus the prior knowledge about the rule that will be us
for the Bayes algorithm~and the optimal learning algorithm!
consists of the teacher being a committee machine with
dom weight vectors. In order to calculate the Bayes error
convenient to rewrite Eq.~4! as

eBayes5^Q~122^Q„t~V,S!t~V8,S!…&~V8uD !!&~DuV!,V,S,

where we have used thatS is independent ofV in this con-
text. TheQ function may be expanded as a binomial sum

Q~122P!5 lim
h→`

(
k50

[h/2] S hkDPk~12P!h2k,

for PP$0,1%. In each term of the expansion we are led
evaluate an expression of the form

y~r !5K )
a51

r

^Q„t~Va,S!t~V0,S!…&~VauD !L
~DuV0!,V0,S

5E )
a50

r

dVaK )
a50

r

P~VauD !L
D

3K )
a51

r

Q„t~V0,S!t~Va,S!…L
S

.

The above expression may be calculated by means of
replica method by introducingn2r21 replicas to take care
of Z(D)2r21, whereZ(D)5*dVP(V)PmQ„tms(V,Sm)… is
the zero-temperature partition function@omitting the trivial
st
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input prior factor in Eq.~1!#. With the r11 integrals in the
numerator it adds up ton replicas and we may therefor
conclude that the expression

K )
a51

r

Q„t~V0,S!t~Va,S!…L
S

in the thermodynamic limit will be equal toy(r ) with order
parameters of the expression taking the saddle-point valu
the free energy of the supervised learning probl
2bF5^ lnZ&(VuD),D at zero temperature, which was solved
Schwarze@7# under some symmetryAnsätze, which will be
described in the following.

Due to the rotational symmetry in the input space, t
scalar quantity may depend only on the scalar order par
etersqkl

ab5(1/N)Vk
a
•V l

b , wherea,b50, . . . ,r are the replica
indices. In the thermodynamic limit these order paramet
are self-averaging and the hidden fieldshk

a5(1/AN)Vk
a
•S

will be correlated Gaussians with zero mean a
^hk

ahl
b&S5qkl

ab . Replica symmetry, i.e., the order paramete
independent of the replica indices, is expected to hold
learnable scenarios.

SinceK randomly drawnN-component vectors will be
mutually orthogonal in the thermodynamic limit withN@K
it follows directly from our prior choice for the teacher th
qkl
aa5dkl . With this prior choice we have not favored an
specific correlations between hidden units, so it is natura
assume partial committee symmetryqkl

ab5D1qdkl for a
Þb. Using this symmetryAnsätzwe arrive, forK→`, at the
result

y~r !52E Dx Hr11SA Qeff

12Qeff
xD ,

where we have defined Dx5(dx/
A2p)e2(1/2)x2, H(t)5* t

`Dx, Qeff52/p(d1arcsinq), and
d5KD, which is assumed to beO~1!. We may now evaluate
the expansion and reintroduce theQ function to obtain the
simple result

eBayes52E Dx HSA Qeff

12Qeff
xD

3Q~122H„AQeff /~12Qeff!x…!

5
1

p
arccos~AQeff!. ~10!

Before discussing the saddle point of the free energy we
discuss the Gibbs and optimal algorithms for this problem

B. Gibbs learning

To study the generalization properties of the Gibbs al
rithm ~and the optimal algorithm! we must calculate the gen
eralization function~5!. This was initially done by Schwarze
@7# and we will only summarize the results. It is a scalar a
may, due to the rotational symmetry in the input space,
pend only on the scalar products
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Rkl5
1

N
Wk•V l , Ckl5

1

N
Wk•W l ,

where the third possible parameter (1/N)Vk•V l5dkl by defi-
nition of the problem as discussed above. The assumptio
partial committee symmetry used in@7# is

Rkl5R1Ddkl , Ckl5C1~12C!dkl . ~11!

This Ansatzdescribes two types of solutions, which are a
observed in simulations: the hidden unit permutation sy
metric solution withD50 and the specialized solution wit
DÞ0 in which the symmetry is broken and each hidden u
is correlated with one of the hidden units of the teacher
the following these solutions will be called the symmet
and the specialized solution, respectively.

The generalization function may be evaluated using
symmetryAnsatz~11! and takingN@K@1,

e~D,r,c!5
1

p
arccosS Reff

A112c/p
D , ~12!

whereReff52/p(r1arcsinD) and the order parameters ha
been rescaled toc5KC andr5KR, which are assumed to
beO~1!. For the Gibbs algorithm in the thermodynamic lim
the self-averaging properties means thatRkl
5^Rkl& (VuD),(WuD) andCkl5^Ckl& (WuD) at the saddle point o
the free energy. ForT50 the average overW corresponds to
an average overV and we therefore haveRkl5D1qdkl and
Ckl5dkl . The generalization error of theT50 Gibbs algo-
rithm therefore becomes

eGibbs5
1

p
arccos~Qeff!. ~13!

C. Optimal learning

We shall now show that, in the thermodynamic lim
where the linear extent of version space shrinks as 1/AN, we
may write the average over the generalization function~12!
as

enet~W,D ![^e~Rkl ,Ckl!&~VuD !

5Še~^Rkl&~VuD ! ,Ckl!‹~VuD !1OS K

AND .
The reason lies in the fact that the differen
DVk5Vk2^Vk& (VuD) is projected only onK!N directions
Wk in Rkl . Each coordinate component will be ofO(1) on
average becausêDVk

2& (VuD)5N(12D2q); therefore its
projection on a particular vector will beWk•DVL'O(AN)
on the average. Consequently,DR'O(1/AN).

In order to calculate the optimal student we must mi
mize the network error~8! with respect toWk for all k.
Using Lagrange multiplierslk to handle the normalization
conditionsuWku25N, we find that the optimal student mu
satisfy
of

-

it
n

e

-

lkWk5(
l

K ]enet~W,D !

]^Rkl&~VuD !
L

~VuD !

^V l&~VuD !

1(
lÞk

K ]enet~W,D !

]Ckl
L

~VuD !

W l .

This shows that the optimal student weightsWk are linear
combinations of the teacher weight vector averag
^Vk& (VuD) . Using partial committee symmetric assumptio
we will assume that only one direction is special; thus

lWk5^Vk&~VuD !1m(
l

^V l&~VuD ! ,

where l is determined by the normalization conditio
whereasm is a free parameter. It may be shown that t
smallest error is obtained form50. The normalizedm50
solution isWk5^Vk& (VuD) /AD1q. Inserting this into the
generalization function~12!, we find to leading order in
1/K

eopt~q,d!5
1

p
arccosS 2S d

Aq
1arcsinAqD

pA11
2d

pq

D . ~14!

D. Small a

In the smalla5O(K21) regime the saddle-point solutio
of the free energy givesq50 @7#, i.e., the solution remains
symmetric. From this it follows that for optimal learnin
(1/N)W l•Wk51, i.e., the optimal solution is the simple pe
ceptron. This result shows that when presented withO(N)
examples, the best one can do is to be conservative an
the student have onlyN parameters. The error of the Baye
algorithm ~10! and the optimal learning algorithm~14! re-
duces to the common result eBayes(d)5eopt(d)
5(1/p)arccos@A(2/p)d#, whereas theT50 Gibbs error
~13! reduces toeGibbs(d)5(1/p)arccos@(2/p)d#.

Figure 1 shows the Bayes and the optimal learning cu

FIG. 1. Learning curve for the committee task on the smala
regime. The lower curve is the result for Bayes algorithm and
timal learning. The upper curve is the zero-temperature Gibbs le
ing curve.
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and the zero-temperature Gibbs learning curve. Asympt
cally, i.e.,aK→`, the typical overlap between two solution
d goes to 1. The Gibbs learning curve shows a strong o
fitting effect with an asymptotic error o
(1/p)arccos(2/p)50.28. The nonzero-temperature Gib
learning curve has a lower asymptotic error and forT→` it
will approach the asymptotic error of Bayes and optim
learning (1/p)arccos(A2/p)50.21. However, the decay to
wards the asymptote will be much slower than in the optim
case.

E. Finite a

The specialized solution withq5O(1) will exist for finite
a5O(1). In this region the saddle points of the free ener
yield the simple relationd1q51 @7#. This leaves us with a
free energy as a function of one parameter, say,q. The so-
lution of this saddle-point equation gives the following r
sult. Fora,7.17 there exists only one solution withq50.
This solution corresponds to the residual generalization e
of the small-a region shown in Fig. 1. This solution exis
for all values ofa. At a57.17 an additional specialize
q.0 solution appears. This solution becomes the minim
of the free energy ata57.68. Therefore, the system makes
first-order transition. The Gibbs learner, the Bayes learn
and the optimal learning curve make a discontinuous dro
a57.68. The generalization error of the different solutio
are shown in Fig. 2. The asymptotic behavior of the learn
curve for the Bayes algorithm and the optimal learning al
rithm may be easily deduced by solving the saddle-po
equations in the limit 12q small,

eBayes5eopt52S E Dt
e2t2/2

H~ t !
D 21

1

a
1OS 1

a2D .
This result is valid forK→` anda!AK and it has a simple
relation to the asymptotic learning curve for the Gibbs alg
rithm obtained by@7#: eBayes5eopt5eGibbs/A2. This is the
same relation between the three algorithms as found for

FIG. 2. Learning curve for the committee task in the finitea
regime. The lower full curve is the result for Bayes algorithm. T
middle full curve is the result for optimal learning. The upper fu
curve is the zero temperature Gibbs learning curve. The metas
states are indicated by dotted lines. Belowa57.68, the Bayes al-
gorithm and the optimal learning algorithm give identical result
ti-

r-
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or
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e

simple perceptron@5,6#, with the prefactor on the error bein
twice the simple perceptron value. We expect, as it has b
observed for the tree committee machine@11#, that for any
finite K the asymptotic behavior will be the same as for t
simple perceptron.

IV. PROTOTYPE TEACHER

In the following we shall study a quite different classifi
cation task, the prototype or proximity problem. The Gib
learning approach to the prototype problem was studied
the simple perceptron in@12# and for the case of the com
mittee machine in@8#. It has also been formulated in th
context of optimal learning in@13#.

The proximity classifier is characterized by a setM
N-dimensional vectorsSm and corresponding binary value
tm561, which together make up the teacher parame
V5$Sm,tm%m51

M . These parameters are used asprototypeex-
amples for the classification: For any input vectorS the clas-
sifier produces an outputt(V,S), which is equal to the out-
put of the prototype vector closest to this input. Mo
precisely,

t~V,S!5(
m

tm )
nÞm

Q~S•Sm2S•Sn!, ~15!

where the prototype vectors are normalizeduSmu25N. We
shall assume that the teacher selects the example ve
symmetrically inside a cone around the prototype so t
S•Sm<mN ~with uSu25N). In the thermodynamic limit it is
straightforward to show that randomly selected examp
will lie on the surface of the coneS•Sm5mNwith probabil-
ity one. Also two examples belonging to the same prototy
will have overlapS1•S25m2N.

The teacher generates a set ofMP training examples,
with Pm belonging to each prototype, so that(mP

m5MP.
Thus the training set may be denoted byD5$Sp

m ,tm%, with
p51, . . . ,Pm andm51, . . . ,M . For a random selection o
examplesPm'P when P@1. We will study the learning
problem in the same limit as@12# N@P@m2P5O(1).

The probability of generating this particular set is, f
problems where the order in which the teacher generates
examples is immaterial,

P~DuV!5 )
m51

M

)
p51

P

P~Sp
muSm!. ~16!

The factorization of the probability~16! over the examples
Dm5$Sp

m ,tm%p51
P belonging to each prototype is a majo

simplification. If thea priori probability for selecting a pro-
totype factorizes, i.e., ifP(V)5PmP(Sm), then the total
probability that any teacher may produce the data set
factorizesP(D)5PmP(Dm) into a product of single-cluste
probabilities P(Dm)5*dSmP(Sm)Pp51

P P(SpmuSm). This is
therefore also the case for the Bayesian invers
P(VuD)5PmP(SmuDm), which will be used below.

ble
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A. Bayes algorithm

By means of the definition~15! we find the probability~2!
that a new exampleSwill yield the results given the knowl-
edge of the training examples

P~suD,S!5(
m

Q~stm!K )
nÞm

Q~S•S8m2S•S8n!L
~V8uD !

.

In calculating this quantity we are using the full Voron
tessellation because we integrate over all the~primed! proto-
types consistent with the examples, while keepingS fixed.
The above formula will, for every set of integrand prot
types, select a unique one that is nearest toS. Integrating
over the prototypes, selection may jump around and th
fore lead to a nontrivial result.

The complete set ofD examples already seen and the n
exampleS are, however, all generated by a particular cho
of prototypes, say,V5$Sm%. This implies~in the thermody-
namic limit! that if S is an example of Sm then
S•Sp

m5m2N1O(1) for all the examples of the same prot
type andS•Sp

n5O(AN) for all other examples~where it is
assumed that the prototype vectors are drawn random!.
From this it immediately follows that the optimal Bayes st
dent becomes trivial@except in the extreme case o
m25O(1/N)] and simply outputs the classification of th
nearest example~or of the nearest estimator!. The Bayes er-
ror therefore vanishes for the prototype problem.

B. Optimal learning

Since a new input is chosen at random to belong to on
the prototypes the generalization function becomes the a
age over the generalization function, for individual subv
umes:

e~W,V!5^Q„2s~W,S!t~V,S!…&~SuV!

5
1

M(
m

^Q„2tms~W,S!…&~SuSm!

and likewise for the network error

enet~W,D !5
1

M (
m51

M

^Q„2tms~W,S!…&~SuDm! , ~17!

where we used that̂f (S)& (SuSm),(SmuDm)5^ f (S)& (SuDm) . It is
straightforward to show that P(SuDm);d(S•Ŝm

2N@m2P/g#), where

Ŝm5
1

g (
p51

P

Sp
m ~18!

is the estimator ofSm andg is determined by the normaliza
tion uŜmu25N:g5AP1P(P21)m2. Comparing this with
P(SuSm);d(S•Sm2Nm), we see that we can obtain the ne
work error from the generalization function by replacin
Sm with the estimatorŜm andm by

m̂5
m2P

g
5mA P̂

11 P̂
, P̂5

m2

12m2P, ~19!
e-

e

of
r-
-

which is smaller thanm and therefore corresponds to a larg
opening angle. The quantityP̂ is a conveniently rescaled
example count@12#. This result was derived by@13# in a less
formal way.

We may now calculate the network error using the res
above

enet~W,D !5
1

M (
m51

M

e~lm,C!. ~20!

The generalization function is expressed in terms of the s
dard expression

e~l,C!5F)
k
E dykdỹk

2p i GQS 2
1

AK(
k
sgnyKD

3expS (
k

ỹ k~yk2lk!1
1

2(k,l Cklỹkỹl D ,
~21!

where the integral overỹk runs along the imaginary axis,

lk
m5

m̂

A12m̂2

1

AN
tmŜm

•Wk ~22!

is the prototype-weight overlap, andCkl5(1/N)Wk•W l is
the usual hidden unit correlation.

What remains to be done to obtain the optimal error~9! is
to find the minimum of Eq.~20! with respect to the weights
It is clear that the minimum must be a superposition of p
totypes of the form

Wk5
1

AM(
m

Dk
mtmŜm ~23!

with suitable coefficientsDk
m , which may be related to the

overlaps through Eq.~22!. This result is not very useful be
cause of the extensive number ofMK5O(N) order param-
eterslk

m . One could go on to minimize Eq.~20! directly.
However, we decide to make simplifying assumptions in
der to get a finite set of order parameters. This may not be
unreasonable since for the simple perceptron the Hebb s
tion lm5l has turned out to optimal@13#.

We assume that at the minimum of Eq.~20! all prototypes
make the same contribution to the error. We will make t
same assumption for the correlations of the hidden unit a
Sec. III:Ckl5C1(12C)dkl . Introducing the hidden state
sk561 we may write

e~l,C!5(
[s]

QS 2
1

AK(
k

skD E Dt)
k
HS sk

tAC2lk

A12C
D .

~24!

In order to haveenet(W,D)5e(l,C) each prototype mus
have the same set of at mostK different overlaps$lk%. Since
Eq. ~24! is invariant under a permutation of thelk’s we may
setlk

m5(pml)k wherepm is an arbitrary permutation of the
K hidden units.
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We shall assume that the permutations are totally rand
so that any given overlapla occurs among theMK overlaps
with probability pa5Ka /K in the thermodynamic limit. Us-
ing these symmetry assumptions, it follows from the requ
ment of minimum of Eq.~20! that each weight vector is
linear combination of the prototype sums

Ŝk
a5

1

AM (
mPMk

a
tmŜm,

where the sum is over the setMk
a ~of size uMk

au5paM ) of
those prototypes that all have overlapla with hidden
unit k.

It is easily shown that in the thermodynamic limit w
have (1/N)Ŝk

a
•Ŝk

b5padab1O(1/AN). For different hidden
units the expression is complicated by the fact that the s
prototype may have the same or different overlaps with
ferent hidden units. However, due to the constraint that e
prototype should have exactlyKa overlaps of sizela , the
probability is KaKb /K(K21) for different overlaps and
Ka(Ka21)/K(K21) if the overlaps are the same. Hence w
may write

1

N
Ŝk
a
•Ŝl

b5
1

K21
~Kpapb2padab!1O~1/AN! ~kÞ l !.

It then immediately follows that the expansion of the weig
vectors takes the form
x

s

,

te
,

-

e
-
h

t

Wk5Aâ0(
a

laŜk
a , ~25!

collecting all explicitP̂ dependences in the parameter

â05
11 P̂

P̂
a0 , a05

12m2

m2

M

N
.

This solution corresponds toDk
m5Aâ0la for mPMk

a in Eq.
~23!.

For the weight overlapsCkl we get the normalization con
dition 15Ckk5â0(ala

2pa and

C5Ckl5

â0KS (
a

lapaD 221

K21
~kÞ l !.

Thus the original symmetryAnsatzfor Ckl is verified by Eq.
~25!. The total number of free parameters may be chose
be then overlapsla and then nonvanishing probabilities
pa subject to the above constraint and of course(apa51 ~if
any pa vanishes, the numbern is effectively reduced by 1!.
Notice that thel ’s determined by minimizing Eq.~24! do
not depend on the vectorsŜk

a .
Finally, we may also calculate the training error~the prob-

ability of error on an example in the training set! under these
assumptions. We obtain
e train5
1

MP(
m,p

K QS 2
1

AK(
k
sgnF 1

AN
tmSp

m
•WkG D L

~DuV!,V

,

y,
e

e

is

out

er-
or
e

lu-
a

no
where the weight vectors are taken from Eq.~25!. Writing
~for fixed but arbitrary m and p)
Wk5Wk

m1Aa0 /Mlat
mŜm, where mPMk

a , the integral
over Sp

m may be carried out. The result may again be e
pressed in terms of the standard function~21! e train
5e(l8,C), where

la8

la
5
11 P̂

P̂
A11~12m2!P̂

11 P̂
'
11 P̂

P̂
.

1. Total symmetry (n51)

In this case we havep151 and it follows that
l151/Aa0 andC51. This is the Hebb solution, which i
optimal for the simple perceptron@3#. Thus, in order to ex-
ploit the computational powers of the committee machine
is necessary to break the symmetry further.

2. Broken symmetry (n52)

In this case, there are in general only two free parame
that may be taken to be the overlapsl1 and l2. For finite
-

it

rs

K there is a further restriction thatKpa has to be a nonzero
integer. ForK53 there is consequently only one possibilit
namely,p15

1
3 and p25

2
3, and this effectively reduces th

number of free parameters to 1. For largeK one may sim-
plify Eq. ~24! using the central limit theorem to carry out th
sum over internal states~see, for example,@8#!. This approxi-
mation was used for all higher values ofK.

In Fig. 3 the behavior of training error and optimal error
depicted as a function ofP̂. The minimization over the two
parameters that are free in this case has been carried
numerically. For smallP̂, we find C.1 for all values of
K, i.e., the optimal solution is close to being the simple p
ceptron.C decreases with increasing training set size. F
large K the asymptotic value of the error behave lik
e5exp(2aK)/AaK, with C521/(K21) and p150.092
512p2.

3. Broken symmetry (n> 2)

For n5K53 we have also investigated the optimal so
tion numerically and find that it always degenerates into
solution in which twola’s coincide, i.e., then52 solution.
Since allla’s must be different, we conclude that there is
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FIG. 3. Optimal learning curve for the prox
imity problem. The generalization and trainin
error as a function ofP̃ for different numbers of
hidden units:K51, 3, 11, and 49.a051.6.
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optimal committee with three members forming three par
for K53. It does not necessarily mean that solutions w
n.2 for K.3 do not exist, but we have not investigate
this.

V. DISCUSSION

In this article we have studied two optimal learning alg
rithms: the Bayes algorithm and the optimal learning alg
rithm, both of which employ prior knowledge about th
problem to be learnt. In the Bayes algorithm the student u
optimal statistics without reference to any specific archit
ture in order to learn the task presented by the teacher.
algorithm therefore places a lower benchmark for what
be obtained by any other method. In optimal learning,
student is required to have a specific architecture and
make an optimal choice of parameters for this architectu

We have theoretically studied the performance of th
algorithms for a committee machine trained on two class
cation tasks: the committee machine teacher and the pro
ity teacher. Ideally, the learning curves we find should p
vide a lower bound on the generalization error, but in or
to find explicit solutions it has been necessary to make
tain symmetry assumptions about the order parameters,
as the weight correlations between hidden units.

For committee machine task for training sets of s
O(N) ~the number of inputs! the solution is committee sym
metric with all student weight vectors having the same ov
lap to all teacher vectors. In the optimal case the solut
leads to identical hidden unit vectors~performing together as
a simple perceptron!, i.e., there is only enough information i
the training set to fixN of NK weights. The same general
zation error is found for Bayes algorithm in this regime.
the Gibbs case@7# the student vectors, however, are not ide
tical. This leads to a higher generalization error signal
s
h

-
-

es
-
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n
e
ill
.
e
-
-
-
r
r-
ch

r-
n

-
g

overfitting. The residual generalization error of the symm
ric solution is nonzero for both the optimal learning a
Gibbs learning algorithms, but higher for Gibbs learning.

For training sets of sizeO(NK), whereK is the number
of hidden units, the committee symmetry may be broken a
both the Gibbs and optimal learners make a first-order tr
sition to a specialized solution in which the student weig
vectors align with their respective teacher vectors. After
transition the decay of the error towards zero is algebr
being a factor ofA2 lower for the optimal algorithms asymp
totically. We find that in contrast to the simple perceptr
and the symmetric phase, Bayes learning is generally be
than optimal learning, in spite of the fact that the student a
teacher have identical architectures. A committee machin
not the best student of a committee machine. Recently
algorithm for implementing Bayes algorithm in the tree co
mittee machine has been suggested@14#. In that case it has
also been found that Bayes algorithm cannot be implemen
by the original teacher architecture.

For the prototype problem the Bayes algorithm gives
trivial result, zero generalization error after presentation
just one example per prototype. The optimal learning of
prototype problem has been studied using the simplest
sible symmetry assumption that does not make the netw
degenerate towards the perceptron. The order paramete
the problem are the embedding strengths of the prototype
is assumed that they may take at most a finite set of val
For small training set sizes the best student is close to b
a simple perceptron~the correlations between hidden unit a
close to one!. Increasing the training set, we observe a co
tinuous decrease of the correlations, i.e., a division of la
between the hidden units.

For this problem, optimal learning is easier to study th
Gibbs learning, i.e., minimizing the training error, becau
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we do not have to employ the replica method. For Gib
learning @8# it has been found that the committee mach
needsO(AK) examples per prototype to obtain a generali
tion ability better than the simple perceptron in the limit
K→`. It is the fully connected committee machine’s abili
to store arbitrary patterns that hinder generalization. T
shows that using prior knowledge may greatly improve
generalization ability especially in cases when the teac
and student have very different architectures.
rd
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is
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