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Optimal learning in multilayer neural networks
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The generalization performance of two learning algorithms, Bayes algorithm and the “optimal learning”
algorithm, on two classification tasks is studied theoretically. In the first example the task is defined by a
restricted two-layer network, a committee machine, and in the second the task is defined by the so-called
prototype problem. The architecture of the learning machine, in both cases, is defined to be a committee
machine. For both tasks the optimal learning algorithm, which is optimal when the solution is restricted to a
specific architecture, performs worse than the overall optimal Bayes algorithm. However, both algorithms
perform better than the conventional stochastic Gibbs algorithm, especially for the prototype problem in which
the task and the learning machine are very different.
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I. INTRODUCTION also possible to define amptimal learningalgorithm for a
specific maching6]. In this article we analyze optimal learn-
Feedforward neural networks are interesting because dfg in the committee machine and the Bayes algorithm for
their ability to extract an underlying rule from examp[@3. ~ two rules that have been studied in the literature for the case
Using the techniques introduced by Gardner and Def@dia of the Glb_bs learning alg_orlthm. From this study it is ther_e-
statistical mechanics has been applied to study how rule eOré Possible to determine to what degree the interesting
traction takes place in feedforward neural netwoti® a multilayer effects observed in the Gibbs learning scenarios

review sed 3]). In these generalization problems the rule isg;%;cgsg:t;;ggesrg;d;ntthzetglva%ﬂ(:r intrinsic proper(ies
usually represented by a teacher network, which provides as Schwarz€ 7] and O'Kane and Wintheig] studied learn-

output.the labels of the correctly cla§S|f|ed inputs. In recen{rlg of two different rules in the fully connected committee
years interest has moved from the S|mplest_ and best undel'ﬁachine(the first implemented by another committee ma-
stood model, the simple perceptron, to multilayer networkScpine and the second defined by the so-called proximity
The simple perceptron is able to implement a limited class of55l |n hoth cases it was observed that there exist two learn-
functions, the linearly separable ones, whereas multilayefg regimes. For small training sets the solution is symmetric
networks, in principle, are able to approximate any functionin the sense that all hidden units have equal probability of
[4]. Multilayer networks are thus of much greater practicalpredicting the right output for the task. In this regime the
Interest. committee machine cannot do better than the simple percep-
The statistical-mechanics analysis becomes increasinglyon learning the same task. For large training sets a transi-
involved when an additional hidden layer of processing unitgion to a specialized solution takes place, i.e., the hidden
is introduced. Our analysis of two-layer networks is limited units make a division of labor for the task. Another effect of
to the committee machine in which only the weights in thethe symmetry of the rule, called retarded generalization, has
input-to-hidden layer are adjustable and the hidden-to-outpiteen observed by the authors [&,10] by which up to a
connections are fixed to unity. When the outputs of the hidcertain critical number of examples the learning machine
den units are restricted to onty1, the output from the com- fails to generalize at all. o _
mittee machine becomes the majority vote of the hidden unit N Sec. Il we outline the statistical approach to learning
outputs. for the general case of a deterministic binary classifier. In

In the usual statistical-mechanics approach, training is‘Sec. Il we consider the Bayes algorithm and optimal learn-

considered to be a stochastic minimization of an energ)'/ng in the committee machine for the realizable case of a

function, which for classification problems is taken to be the'Ule—the teacher—itself defined to be a committee machine
sum of misclassifications on the training set, a strategy that i e same structure as the student network. In Sec. IV we
usually calledGibbs learning It is possible, however, to get consider the Bayes algorithm and optimal leamning in the
better average generalization ability if we have at our disProximity problem, which is only realizable by a committee
posal additional knowledge about the rule. It is possible tdnaph_m_e n the I|m|t_ where the numt_)er of hidden units goes
define an optimalin the information theoretical sendearn-  t© infinity. Finally, in Sec. V we give a summary and a
ing algorithm, which is the one that gives the lowest averagdliscussion of the results.

generalization error. This algorithm, tBayes algorithnj5],

; . . . . . Il. STATISTICAL THEORY OF LEARNING
is defined without reference to the learning machine. It is

WITH A TEACHER

The basic information available in the learning problem is
*Electronic address: winther@connect.nbi.dk the training set: a set ofP input-output pairs
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D=(S,7)={S",7},=1,...p, Where the input is an S=(S;,...,Sy) and the outputis given by a binary function
N-dimensional real vectoS=(Sy, . ..,Sy), and the output o (W,S)==*1, whereW is a set of structural parameters,
is binary 7=*1. We shall assume that the examples arecalled weights, which specify the possible realizations of the
obtained from an unknown deterministic classifieglled the  general architecture given by the form of the function.
teache), characterized by an outputV,S) and a set of pa- In Secs. Il and IV we shall consider a specific two-layer
rametersV. The teacher is assumed to draw the exampleseural network model, the fully connected committee ma-
randomly and independently with this distributi@®(S|V).  chine student, wittN inputs, K hidden units, and a single
As indicated, the distribution may in principle depend on theoutput unit. The weight vector of thieth hidden unit is de-
teacher’s internal structure. In Secs. Ill and IV we presennoted byW, and the committee machine performs a simple
two explicit examples of teachers. The probability that the(binary) majority vote on the output from thi€ simple per-

teacher generates the whole training set becomes ceptrons of the hidden layer:
P K
P(D|V)= ] O[7#7(V,54)1P(S*|V). (1) o(W,S)= sg iE sgr(iwk-s :
p=1 N = JN

Using Bayesian inversion, we may now calculate the posteThe length of each of the weight vectors is fixed by a spheri-
rior probability of teachers given the training set cal constrainfW,|2=N and the components of the inputs
P(V|D)=P(D|V)P(V)IP(D), where P(V) is thea priori  are taken to be random, @ (1) and independent. The pre-
measure in the space of teachers anB(D) factors 14/N and 14K are introduced for convenience to
=[dVP(D|V)P(V). The actual set of teachefi® V spacé  make the arguments of the sign functionsQufl).

that may generatB is calledversion spacand is defined as The network’s ability to generalize is measured by the
thoseV's for which P(V|D)>0. generalization functionwhich is defined to be the error on a

single example averaged over all possible input values,

A. Bayes algorithm
I . e(W,V)=(0(=a(W,97(V,9))sv) 5
We may now calculate the probability in version space for
an outputo, given the inputs, where( )gv)=/dSP(S|V)- - - denotes the average over in-
B put values. In the Gibbs learning approach the student clas-
P(a|D,S)=(O[rr(V.S)])vp) - @ sifier undergoes training based on minimization of the train-

. _ P .
Since we do not know the true rule, except that it must be if?9 emor E(W,D)=2, _,0(-7*c(W,S")). It is assumed
the version space somewhere, we may also interpréhat after training the ensemble of student networks will be

P(o|D,S) as the probability that the true rule gives Outputcharacterized by a Gibbs posterior probability distribution

o on inputS. 1
Under these circumstances the best we can do is to choose P(W|D)= ——e FEWDIp(wy), (6)
the output label that has the highest probability according to Z(D)

Eq. (2). For binary classification, we have ) o ) )
a. @) y where P(W) is the a priori measure in weight space and

Ogayed D, S) =argmaxP(a|D,S) = sgn(7(V,S))vp) - T=1/g is a formal temperature. The normalization constant
o becomesZ(D)=[dWP(W)e PEMW.D)  The generalization
(3)  error of the Gibbs algorithm is calculated by taking the pos-

terior average over the generalization function E5j.
This is theBayes algorithm The probability that the algo- g g =

rithm yields an error is given bfp(— Usayes(D,S)| D,S). Av- €cibbd V. D)= (e(V,W)) wip) - 7)
eraging over all possible inputs, we obtain the expected gen-
eralization error of Bayes algorithm This quantity is also expected to be self-averaging
in the thermodynamic limit egppd VD)~ €gibbs
eBayeiD):(P(_O'BayeiD:S)|D:S)>(S|V) . (4) E<EGibbs(VrD)>V,D-

In the subsequent sections we will study the limit of large
system sizegthe thermodynamic limjtin which quantities
such as the error are expected to be self-averaging, i.e., In the optimal learningalgorithm we exploit the fact that
€ayed D) =~ €payes=(€payed D))p . In principle, it is clear we can average out the ignorance about the rule in the gen-
how to implement the Bayes classifier using Eg). How-  eralization function to form a new quantity, timetwork er-
ever, in practical situations it might not be possible to evalu+or [6],

ate, i.e., to construct, a learning machine that will implement

it. The Bayes algorithm may, nevertheless, serve as a bench- €ne( W, D) =(e(W,V))(vip) - (8)
mark for all other algorithms.

C. Optimal learning

The network error depends only on observable quantities and
is thus in principle calculable from the training set and the
prior knowledge of the teacher. It is the expected generaliza-

In a deterministic binary classifier, such as a feedforwardion error for any studentV that has been presented with the
neural network, the input is aN-dimensional real vector set of example®.

B. Gibbs learning
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The best student is, in this case, the one with the lowesnput prior factor in Eq.(1)]. With ther + 1 integrals in the
network errorW,p( D) =arg minye,.( W,D) leading to the numerator it adds up ton replicas and we may therefore

smallest expected generalization error conclude that the expression
eopt( D)= enel(Wopt( D),D). 9 r
. | . 11 0G(v°,97(Vv23)
In contrast to the Bayes algorithm, the optimal learning al- a=1 s

gorithm does depend on the choice of learning machine. No-
tice that this is the best that can be done with a fixed studen, the thermodynamic limit will be equal tg(r) with order

architecture. . _ parameters of the expression taking the saddle-point value of
In general, one has the following relation between thethe free energy of the supervised learning problem
three learning algorithms describegayess €op= €cinbs: FOr  — BF =(InZ)p) 5 at zero temperature, which was solved by

the simple perceptron learning a perceptron teacher, it turngchwarze 7] under some symmetrinsaze which will be
out that the equality between the Bayes and optimal learningescribed in the following.

holds[6]. For the scenarios studied in this paper it turns out pye to the rotational symmetry in the input space, this

not to be so. scalar quantity may depend only on the scalar order param-
etersq?P=(1/N)VZ. VP, wherea,b=0, . .. r are the replica
lll. COMMITTEE MACHINE TEACHER indices. In the thermodynamic limit these order parameters

. X ) B a
In the following we consider the learnable case of a task o self-averaging and the h|dden f|elti$—(1/\/ﬁ)vk S
il be correlated Gaussians with zero mean and

defined by a teacher network of the same structure as th ) .
y ﬁ‘h|b>5= q‘,;‘,b. Replica symmetry, i.e., the order parameters

student network 7(V,S)=sgf (1VK)Z,sgnV,- SVN)] AR .
trained onP=aNK training examples with inputs drawn independent of the replica indices, is expected to hold for
learnable scenarios.

component by component with independent normal distribu- Sj i .

. N/ — 2 ince K randomly drawnN-component vectors will be

tions: P(S) = (27) %™ (3% The teacher vectors are cho- mutually orthogonal in the thermodynamic limit withs>K

sen to be random with spherzlcal normalization, i.€.,jt follows directly from our prior choice for the teacher that

PV)=ILP(V\) andP(Vi) > 5(|Vif“=N). gii= 8 . With this prior choice we have not favored any

specific correlations between hidden units, so it is natural to
A. Bayes algorithm assume partial committee symmetgi’=D+qd,, for a

Thus the prior knowledge about the rule that will be used# b. Using this symmetrAAnsaz we arrive, forK —o, at the

for the Bayes algorithniand the optimal learning algorithm ~ result

consists of the teacher being a committee machine with ran-

dom weight vectors. In order to calculate the Bayes error it is 1 Qe
convenient to rewrite Eq(4) as y(r)=2f DxH 1-Q. )
eff
€gaye= (O (1-2(O(7(V,S)7(V',9)) v/ ,
ayes= (O (O((V.91( v o v.s where we have defined  Dx=(dx/

where we have used th&tis independent o¥ in this con-  2m)e (< H(t)= DX, Q= 2/m(d+arcsirg), and
text. The® function may be expanded as a binomial sum d=KD, which is assumed to b8(1). We may now evaluate
the expansion and reintroduce tRefunction to obtain the

[h/2] ;
simple result
0(1-2P)=1lim X, (k)Pk(l—P)hk,
h—o k=0
. EBayeSZZJ DXH( \/ ?eff X)
for Pe{0,1. In each term of the expansion we are led to 1-Qesr
evaluate an expression of the form % O(1—2H( O (1= 0uX))
- eff — eff
r
1
y(r) =< H (0(7(V3,9) T(VO,S))><va|D)> = —arcco$ Q). (10)
a=1 (D|VO),VO0,S 77
. l_r[ dve l_r[ P(VAID Before discussing the saddle point of the free energy we will
) aco a=0 ( ) 5 discuss the Gibbs and optimal algorithms for this problem.

><< Hl o(r(V°,9) T(Va,S))> B. Gibbs learning

s To study the generalization properties of the Gibbs algo-

rithm (and the optimal algorithinwve must calculate the gen-
The above expression may be calculated by means of theralization function5). This was initially done by Schwarze
replica method by introducing—r — 1 replicas to take care [7] and we will only summarize the results. It is a scalar and
of Z(D) "1, whereZ(D)=[dVP(V)II,O(7*0o(V,S*))is  may, due to the rotational symmetry in the input space, de-
the zero-temperature partition functipamitting the trivial  pend only on the scalar products
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1 1
RkI:NWk'VI ) CkI:NWk’WI )

where the third possible parameterNI¥/ - V,= é,, by defi-
nition of the problem as discussed above. The assumption of
partial committee symmetry used fii] is

Rk|:R+A5k|, Ck|:C+(1_C)5k|. (11)

This Ansatzdescribes two types of solutions, which are also 01 §
observed in simulations: the hidden unit permutation sym- i ]
metric solution withA =0 and the specialized solution with e
A #0 in which the symmetry is broken and each hidden unit 0 to a%" _ P?N 20 50
is correlated with one of the hidden units of the teacher. In

the following these solutions will be called the symmetric  FIG. 1. Learning curve for the committee task on the small-

ol vt vty

and the specialized solution, respectively. regime. The lower curve is the result for Bayes algorithm and op-
The generalization function may be evaluated using thdimal learning. The upper curve is the zero-temperature Gibbs learn-
symmetryAnsatz(11) and takingN>K>1, ing curve.
d€ne{ W,D)
1 Reft MW, = 2 <ne—a> \V;
A =_ar L 12 kW= (V)wip)
€(A,p,c)=—a cco{ —1+20/7T> : 12 ™\ AR o) | o)
d€ne{ W,D)
whereRq 4= 2/7r(p+ arcsim\) and the order parameters have + T oCu W, .
17K K [ wip)

been rescaled to=KC and p=KR, which are assumed to
beO(1). For the Gibbs algorithm in the thermodynamic limit 1ic shows that the optimal student weights, are linear

the — self-averaging  properties means thaRy  c,mpinations of the teacher weight vector averages

T]<|§kl>(VID),(WID) and_CkI=h<Ckl>(W|D) at the saddle po:jnt of (Vi)(vpy- Using partial committee symmetric assumption,
the free energy. FOr =0 the average oveN corresponds to o il assume that only one direction is special; thus
an average ove¥ and we therefore havie,,=D +qé, and

Cy 1= 6k - The generalization error of thE=0 Gibbs algo-

rithm therefore becomes )\Wk:<vk>(V\D)+ME| (V)b
‘ —iarccoxéQ : (19 where N is determined by the normalization condition,
€Gibbs™ - eff/- whereasu is a free parameter. It may be shown that the

smallest error is obtained fqu=0. The normalizedu=0

solution is Wi =(V\)(v|py/ VD +q. Inserting this into the

generalization function12), we find to leading order in
We shall now show that, in the thermodynamic limit, 1/K

where the linear extent of version space shrinks a®1ive

C. Optimal learning

may write the average over the generalization functib®) 2 i+ arcsin/g
as 1 Vg
€opi 0, d) = —arcco o 14
Gnet(W-D)E<€(Rk| erI)>(V|D) 7T\/1+_
mq
={e((Ri)(v|p)Cic)dvip) + O -
=A€l( R/ v|p) » ki) 2(v|D) \/N : D. Small &

In the smalle=O(K 1) regime the saddle-point solution

The reason lies in the fact that the differenceof the free energy giveg=0 [7], i.e., the solution remains
AV =V —(Vi)(vip) is projected only orK<N directions  symmetric. From this it follows that for optimal learning
W, in R, . Each coordinate component will be Gf(1) on  (1/N)W,-W,=1, i.e., the optimal solution is the simple per-
average becauseAvﬁ)MD):N(l—D—q); therefore its ceptron. This result shows that when presented \@itiN)
projection on a particular vector will b&/,- AV, ~O(y/N) examples, the best one can do is to be conservative and let
on the average. ConsequentlyR~O(1/\N). the student have onl{ parameters. The error of the Bayes

In order to calculate the optimal student we must mini-algorithm (10) and the optimal learning algorithrfi4) re-
mize the network erro8) with respect tow, for all k. duces to the common result eg,e{d)= €qp(d)
Using Lagrange multipliera., to handle the normalization =(1/7)arcco$y/(2/7)d], whereas theT=0 Gibbs error
conditions|W,|?=N, we find that the optimal student must (13) reduces tcegj,pdd) = (1/7)arcco§(2/m)d].
satisfy Figure 1 shows the Bayes and the optimal learning curve
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0.3 T simple perceptrof5,6], with the prefactor on the error being
twice the simple perceptron value. We expect, as it has been
observed for the tree committee mach[dd], that for any
finite K the asymptotic behavior will be the same as for the
simple perceptron.

02~

IV. PROTOTYPE TEACHER

o1r In the following we shall study a quite different classifi-

cation task, the prototype or proximity problem. The Gibbs

learning approach to the prototype problem was studied for

the simple perceptron ifl2] and for the case of the com-

I T R T a— mittee machine in8]. It has also been formulated in the
a= P/KN context of optimal learning if13].

The proximity classifier is characterized by a ddt

FIG. 2. Learning curve for the committee task in the finite- . . . .
g N-dimensional vector§&* and corresponding binary values

regime. The lower full curve is the result for Bayes algorithm. The P )
middle full curve is the result for optimal learning. The upper full ™ — +1, which together make up the teacher parameters

curve is the zero temperature Gibbs learning curve. The metastabé=1{S", TM},'\le- These parameters are usegestotypeex-

states are indicated by dotted lines. Belew: 7.68, the Bayes al- amples for the classification: For any input vecBthe clas-

gorithm and the optimal learning algorithm give identical results. sifier produces an output(V,S), which is equal to the out-
put of the prototype vector closest to this input. More

and the zero-temperature Gibbs learning curve. AsymptotiPrecisely,

cally, i.e.,aK—x, the typical overlap between two solutions

d goes to 1. The Gibbs learning curve shows a strong over-

fitting  effect with an  asymptotic error  of 7(Vv,9=> =[] 0(ss#-s 9, (15

(1/7)arccos(2#)=0.28. The nonzero-temperature Gibbs u vEp

learning curve has a lower asymptotic error andTes o it

will approach the asymptotic error of Bayes and optimal ) 5

learning (1#)arccos(/2/)=0.21. However, the decay to- Where the prototype vectors are normaliZ&|°=N. We

wards the asymptote will be much slower than in the optimafSha‘II assume _tha} the teacher selects the example vectors
case. symmetrically inside a cone around the prototype so that

S-s*<mN (with |[§2=N). In the thermodynamic limit it is

straightforward to show that randomly selected examples

will lie on the surface of the con8- S*=mN with probabil-
The specialized solution with=O(1) will exist for finite ity one. Also two examples belonging to the same prototype

a=0(1). In this region the saddle points of the free energywill have overlapS; - S,=m?N.

yield the simple relatioml+ q=1 [7]. This leaves us with a The teacher generates a set MfP training examples,

free energy as a function of one parameter, spyThe so-  with P* belonging to each prototype, so thaj,P*=MP.

lution of this saddle-point equation gives the following re- Thus the training set may be denoted DF{S{;'TM}, with

sult. Fora<7.17 there exists only one solution with=0. p=1,...P*andu=1,... M. For a random selection of

This solution corresponds to the residual generalization errasxamplesP“~P when P>1. We will study the learning

of the smalle region shown in Fig. 1. This solution exists problem in the same limit 2] N>P>m?P=0(1).

for all values of . At @=7.17 an additional specialized The probability of generating this particular set is, for

q>0 solution appears. This solution becomes the minimunproblems where the order in which the teacher generates the

of the free energy ak=7.68. Therefore, the system makes aexamples is immaterial,

first-order transition. The Gibbs learner, the Bayes learner,

and the optimal learning curve make a discontinuous drop at

«=7.68. The generalization error of the different solutions Mo P

are shown in Fig. 2. The asymptotic behavior of the learning PIV)=[1 II Psils). (16)

curve for the Bayes algorithm and the optimal learning algo- #=1p=1

rithm may be easily deduced by solving the saddle-point

equations in the limit +q small,
o forkay] 5ol
€ = €opt— t —+0| —].
Bayes omt H(t) @ o totype factorizes, i.e., ifP(V)=II,P(S"), then the total
probability that any teacher may produce the data set also

This result is valid folk — o anda< K and it has a simple factorizesP(D) =11 ,,P(D*) into a product of single-cluster
relation to the asymptotic learning curve for the Gibbs algo-Jrobabilities P(DM)zde/‘P(Sf‘)HE:lP(S{ﬂSF). This is
rithm obtained by[7]: €gayes= €opi= Egibbs/ J2. This is the therefore also the case for the Bayesian inversion
same relation between the three algorithms as found for th®(V|D)=1I,P(S*|D*), which will be used below.

E. Finite

The factorization of the probabilityl6) over the examples
D/*:{Sg‘,r"}f)’:l belonging to each prototype is a major
simplification. If thea priori probability for selecting a pro-
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A. Bayes algorithm which is smaller thamn and therefore corresponds to a larger

By means of the definitiofl5) we find the probability2) ~ Opening angle. The quantity is a conveniently rescaled
that a new exampl8 will yield the resulto given the knowl-  €xample counf12]. This result was derived byi3] in a less

edge of the training examples formal way. _
We may now calculate the network error using the result
above
P(o|D,9)=2, O(cr)| [] O(S- 5#-5.57)
: e (vV'[D) M
€nel W,D) = 32 e(\“,C). (20)
In calculating this quantity we are using the full Voronoi net mm M= '

tessellation because we integrate over all(framed proto-
types consistent with the examples, while keepfixed. = The generalization function is expressed in terms of the stan-
The above formula will, for every set of integrand proto- dard expression
types, select a unique one that is nearesS.tdntegrating
I f dydyx 1
K 2i

- J_R; sgryK>

over the prototypes, selection may jump around and there-
fore lead to a nontrivial result. €(\,C)=
The complete set dd examples already seen and the new

exampleS are, however, all generated by a particular choice 1

of prototypes, sayy={S*}. This implies(in the thermody- Xex;( PR R Ck,')?k'y,>,
namic limit) that if S is an example of S* then K 24
S~Sg=m2N+O(1) for all the examples of the same proto- (21

type andS-S,,’j=O(\/N) for all other examplegwhere it is _

assumed that the prototype vectors are drawn randomlywhere the integral ovey, runs along the imaginary axis,
From this it immediately follows that the optimal Bayes stu-

dent becomes triviallexcept in the extreme case of m 1 .
m?=0(1/N)] and simply outputs the classification of the Mf:m J_NTMS”'Wk (22)
nearest exampléor of the nearest estimajoThe Bayes er-

ror therefore vanishes for the prototype problem. is the prototype-weight overlap, ar@,=(1/N)W,-W, is

_ _ the usual hidden unit correlation.
B. Optimal learning What remains to be done to obtain the optimal ef@iis

Since a new input is chosen at random to belong to one de find the minimum of Eq(20) with respect to the weights.
the prototypes the generalization function becomes the avelt i clear that the minimum must be a superposition of pro-
age over the generalization function, for individual subvol-totypes of the form

umes:
1 -
e(W,V)=(0(~ (W, S)7(V,S)))sv, Wk=—MZ D s (23)
o
1

=ME (O(—70(W,9)))(gsx) with suitable coefficient®{*, which may be related to the
a overlaps through Eq22). This result is not very useful be-
and likewise for the network error cause of the extensive number MK =O(N) order param-

eters\{. One could go on to minimize Eq20) directly.
1 However, we decide to make simplifying assumptions in or-
€nef W,D)= MZ (O(=70(W,9))gpm s (17)  der to get a finite set of order parameters. This may not be so
w=t unreasonable since for the simple perceptron the Hebb solu-
tion A*=X\ has turned out to optim&lL3].
We assume that at the minimum of Eg0) all prototypes
make the same contribution to the error. We will make the
same assumption for the correlations of the hidden unit as in

M

Where we Used thdtf(s)>(5‘5“),(5“|D“):<f(s)>(S‘D/") . ItAiS
straightforward to  show that P(§D*)~ §(S- S*
—N[m?P/y]), where

1P Sec. lll: Cy;=C+(1—-C) éy,. Introducing the hidden states
=_ o=*1 we may write
S+ yp};,l s (18) K y
. . . . . 1 tvC— Ny
is the estimator 08* andy is determined by the normaliza- e(A,C)zE @)( — —2 oy f DtH H| op——1.
tion |S#/2=N:y=\P+P(P—1)m?. Comparing this with o] VK K vi-C
P(SS*) ~ 8(S- S*—Nm), we see that we can obtain the net- (24)

work error from the generalization function by replacing

S with the estimato* andm by In order to havee,(W,D)=¢(\,C) each prototype must

have the same set of at mastifferent overlapg\,}. Since
Eq. (24) is invariant under a permutation of thg's we may

2 s 2
M= m_P -m L pP= lz =) (19) set\{ = (7*\), wheres* is an arbitrary permutation of the
Y 1+P 1-m* K hidden units.
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We shall assume that the permutations are totally random, _ -
so that any given overlap, occurs among th# K overlaps Wi=vVaoX oSt (25
with probability p,=K,/K in the thermodynamic limit. Us- 2
ing these symmetry assumptlons it follows from the require
ment of minimum of Eq.(20) that each weight vector is a
linear combination of the prototype sums

‘collecting all epr|C|tP dependences in the parameter

. 1+P 1-m? M
1 aoz—’—P ag, ao:—z—m N°
S§=— X ™8,
\/MMEME

where the sum is over the satly (of size| M}|=p,M) of (23).

those prototypes that all have overlap, with hidden _For the weight °Veg'ap@k' we get the normalization con-
unit k. dition 1=Cyx=apZa 5P, and

This solution corresponds = \ag\ , for e M2 in Eq.

It is easily shown that in the thermodynamic limit we 5
have (1N)$ Sz Pada+ O(1/4N). For different hidden &0K< > )\apa) -1
units the expression is complicated by the fact that the same C=Cu— a
prototype may have the same or different overlaps with dif- i
ferent hidden units. However, due to the constraint that each
prototype should have exactl, overlaps of size\,, the  Thus the original symmetnjnsatzfor C,, is verified by Eq.
probability is K,K,/K(K—1) for different overlaps and (25). The total number of free parameters may be chosen to
Ka(Ka—1)/K(K—1) if the overlaps are the same. Hence webe then overlaps\, and then nonvanishing probabilities
may write pa Subject to the above constraint and of couts@,=1 (if
any p, vanishes, the number is effectively reduced by)1
Notice that the\’s determined by minimizing Eq(24) do
not depend on the vectof .

Finally, we may also calculate the training erftire prob-

It then immediately follows that the expansion of the weightability of error on an example in the training sander these
vectors takes the form assumptions. We obtain

1 (k#1).

1. - 1
S S =7 (KPaPb—Padan) + O(LWN)  (k#1).

ok {W"S‘? WD >(DV),V'

1
€train— W,sz <

where the weight vectors are taken from EB5). Writing K there is a further restriction th&p, has to be a nonzero
(for fixed but  arbitrary u and p) integer. ForK =3 there is consequently only one possibility,
Wy =W+ JagIMA, 7S, where ue M2, the integral namely,p;=3 and p,=3, and this effectively reduces the
over S5 may be carried out. The result may again be ex-humber of free parameters to 1. For laigeone may sim-

pressed in terms of the standard functid®l) ey, Plify Ed. (24) using the central limit theorem to carry out the

= ¢(\',C), where sum over internal statdsee, for exampld8]). This approxi-
mation was used for all higher values kf
, - N ~ In Fig. 3 the behavior of training error and optimal error is
E: 1+P A /1+(1_[“ )P_1+P depicted as a function d®. The minimization over the two
Na P 1+P P parameters that are free in this case has been carried out

numerically. For smallP, we find C=1 for all values of

K, i.e., the optimal solution is close to being the simple per-

ceptron.C decreases with increasing training set size. For
In this case we havep;=1 and it follows that large K the asymptotic value of the error behave like

N1=1/\Jay andC=1. This is the Hebb solution, which is e=exp(-aK)/yaK, with C=—1/(K—1) and p,=0.092

optimal for the simple perceptrdi8]. Thus, in order to ex- =1—p,.

ploit the computational powers of the committee machine, it

is necessary to break the symmetry further.

1. Total symmetry (r=1)

3. Broken symmetry (& 2)

Forn=K=3 we have also investigated the optimal solu-
tion numerically and find that it always degenerates into a
In this case, there are in general only two free parametersolution in which twol\ ;'s coincide, i.e., then=2 solution.
that may be taken to be the overlaps and \,. For finite  Since all\;'s must be different, we conclude that there is no

2. Broken symmetry (#=2)
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optimal committee with three members forming three partieoverfitting. The residual generalization error of the symmet-
for K=3. It does not necessarily mean that solutions withric solution is nonzero for both the optimal learning and
n>2 for K>3 do not exist, but we have not investigated Gibbs learning algorithms, but higher for Gibbs learning.
this. For training sets of siz®(NK), whereK is the number
of hidden units, the committee symmetry may be broken and
V. DISCUSSION both the Gibbs and optimal learners make a first-order tran-
sition to a specialized solution in which the student weight

In this article we have studied two optimal learning algo_vectors align with their respective teacher vectors. After the
rithms: the Bayes algorithm and the optimal learning algo- 9 P '

rithm, both of which employ prior knowledge about the tra.nsition the decay of the error tqwards zero is algebraic,
problem to be leant. In the Bayes algorithm the student use€ing a factor of/2 lower for the optimal algorithms asymp-
optimal statistics without reference to any specific architeciotically. We find that in contrast to the simple perceptron
ture in order to learn the task presented by the teacher. Th@nd the symmetric phase, Bayes learning is generally better
algorithm therefore places a lower benchmark for what carthan optimal learning, in spite of the fact that the student and
be obtained by any other method. In optimal learning, théeacher have identical architectures. A committee machine is
student is required to have a specific architecture and wilhot the best student of a committee machine. Recently, an
make an optimal choice of parameters for this architecture.algorithm for implementing Bayes algorithm in the tree com-
We have theoretically studied the performance of thesenittee machine has been suggedtgd]. In that case it has
algorithms for a committee machine trained on two classifi-also been found that Bayes algorithm cannot be implemented
cation tasks: the committee machine teacher and the proxiny the original teacher architecture.
ity teacher. Ideally, the learning curves we find should pro- For the prototype problem the Bayes algorithm gives a
vide a lower bound on the generalization error, but in ordetrivial result, zero generalization error after presentation of
to find explicit solutions it has been necessary to make cerjust one example per prototype. The optimal learning of the
tain symmetry assumptions about the order parameters, sughototype problem has been studied using the simplest pos-
as the weight correlations between hidden units. sible symmetry assumption that does not make the network
For committee machine task for training sets of sizedegenerate towards the perceptron. The order parameters of
O(N) (the number of inpujsthe solution is committee sym- the problem are the embedding strengths of the prototypes. It
metric with all student weight vectors having the same overis assumed that they may take at most a finite set of values.
lap to all teacher vectors. In the optimal case the solutiorFor small training set sizes the best student is close to being
leads to identical hidden unit vectofserforming together as a simple perceptrofthe correlations between hidden unit are
a simple perceptroni.e., there is only enough information in close to ong Increasing the training set, we observe a con-
the training set to fiXN of NK weights. The same generali- tinuous decrease of the correlations, i.e., a division of labor
zation error is found for Bayes algorithm in this regime. In between the hidden units.
the Gibbs casf7] the student vectors, however, are not iden-  For this problem, optimal learning is easier to study than
tical. This leads to a higher generalization error signalingGibbs learning, i.e., minimizing the training error, because
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